Thursday, 1 June 2017

In silico Study of Bacillus brevis Xylanase - Structure Prediction and Comparative Analysis with Other Bacterial and Fungal Xylanase

The most important building block of hemicelluloses is xylan. It is broken down into xylose oligomer residues by Xylanase - an enzyme, produced by most organisms, to utilize xylose as primary source of carbon. The Xylanase produced are classified into families, viz 5, 8, 10, 11 and 43 - of Glycoside Hydrolases (GH).

international journal biomedical data mining
Xylanase from family GH 11 are monospecific, they consist solely of Xylanase activity, exclusively active on D-xylose containing substrates.They are inactive on aryl cellobiosidase. The fungal Xylanase are produced in higher concentrations, as compared to bacterial Xylanase, but have limited use in pulp bleaching, as they affect the viscosity and strength of the product. In the present study, we have worked upon the Xylanase of Bacillus brevis, which is fulfilling all the required quality needed to be a commercial Xylanase, and thus is used by many industries. The enzyme, when studied after modelling, provided similar structural configuration with high stability. When compared with other bacterial and fungal Xylanase structures, it provided better potential to ‘activity enhancement’ and ‘in silico handling’.

No comments:

Post a Comment