Wednesday, 28 December 2016

A Multi-Layer Non-Newtonian Model of Cardiovascular Inflammation

We found that such locations are correlated to the vulnerable plaque phenotype, which is prone to rupture. Our results demonstrate that at locations of high particle concentration, blood particles change the shear stress distribution and magnitude. Therefore, the non-Newtonian blood flow assumption provides new insights in the characterization of plaque built up. 

biomedical engineering journals
These results are combined to in-vitro experiments that suggest the influence of blood particles in the activity of cytokines. An unbalance in pro and anti-inflammatory cytokines has been associated to an increase in inflammation and, consequently, in the volume of plaques forming. We anticipate our work to be a starting point for a more sophisticated multi-scale model, which combines experimental findings and computational modelling to characterize arterial segments affected by atherosclerosis. Such model includes a coupling between the distending arterial wall and the non-Newtonian blood flow.

No comments:

Post a Comment